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Results

• We trained and tested five MIL models using 

three datasets: CAMELYON16+17 (breast 

cancer), TCGA-Lung (lung cancer), and 

TCGA-Kidney (kidney cancer)

• We estimated the mean accuracy and AUC 

using bootstrapping over 200 folds
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• Cancer pathology involves evaluating tissue 

samples on glass slides, which is tedious and 

error-prone

• Whole-slide imaging allows for digital analysis 

of tissue samples using machine learning

• One state-of-the-art method is multiple instance 

learning (MIL), which involves splitting the slide 

into many patches

• Attention-based MIL models have performed 

better than other MIL models [1]

• Transformer-based models, which use self-

attention, have reported a high AUC [2]

We are interested in comparing MIL algorithms to 

find an optimal model for classifying whole-slide 

images. Also, we want to verify that Transformer-

based algorithms achieve a higher performance 

than other attention-based algorithms.

• Attention-based MIL models performed better 

than the standard MIL model

• On average, the attention-based MIL 

models achieved a higher accuracy and 

AUC than standard MIL models

• No attention-based MIL model clearly 

outperformed the others

• Transformer-based models did not achieve a 

higher accuracy and AUC than other attention-

based models

• Also, the Transformer used a lot of memory, 

which made training difficult

• Positional encoding did not have a large 

effect on accuracy or AUC

• Therefore, for whole-slide imaging tasks, we 

recommend an attention-based MIL model

• However, for large datasets, we do not 

recommend Transformer-based models due 

to the memory required for training

• Further research could focus on improving the 

Transformer by reducing memory usage
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MIL max pooling 525,826

CLAM SB [1]
single-branch 

attention
790,791

CLAM MB [1]
multiple-branch 

attention
791,084

Transformer Transformer 2,628,114

TransMIL [2]
Transformer with 

positional encoding
2,672,146

Error bars represent 

95% confidence 
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